skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Case, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global product platforms can reduce production costs through economies of scale and learning but may decrease revenues by restricting the ability to customize for each market. We model the global platforming problem as a Nash equilibrium among oligopolistic competing firms, each maximizing its profit across markets with respect to its pricing, design, and platforming decisions. We develop and compare two methods to identify Nash equilibria: (1) a sequential iterative optimization (SIO) algorithm, in which each firm solves a mixed-integer nonlinear programming problem globally, with firms iterating until convergence; and (2) a mathematical program with equilibrium constraints (MPEC) that solves the Karush Kuhn Tucker conditions for all firms simultaneously. The algorithms’ performance and results are compared in a case study of plug-in hybrid electric vehicles where firms choose optimal battery capacity and whether to platform or differentiate battery capacity across the US and Chinese markets. We examine a variety of scenarios for (1) learning rate and (2) consumer willingness to pay (WTP) for range in each market. For the case of two firms, both approaches find the Nash equilibrium in all scenarios. On average, the SIO approach solves 200 times faster than the MPEC approach, and the MPEC approach is more sensitive to the starting point. Results show that the optimum for each firm is to platform when learning rates are high or the difference between consumer willingness to pay for range in each market is relatively small. Otherwise, the PHEVs are differentiated with low-range for China and high-range for the US. 
    more » « less